The angle bisectors
of the triangle meet at the center of the inscribed circle of radius r. If we let 2α=A, 2β=B, and 2γ=C, we have α+β+γ=π2.
Let x be the distance from the vertex at A to points of tangency, y the distance from B, and z the distance from C. Then then lengths of the triangle sides opposite A, B, and C are respectively a=y+z, b=x+z, and c=x+y.
Thus if we name the semiperimeter s, then s=x+y+z, x=s−a, y=s−b, and z=s−c.
Thus if we name the semiperimeter s, then s=x+y+z, x=s−a, y=s−b, and z=s−c.
tanα=rx, tanβ=ry, and tanγ=rz. Because γ and (α+β) are complementary angles, we
obtain
tan(π2−(α+β))=rz
tan(α+β)=zr
tanα+tanβ1−tanαtanβ=zr
r(tanα+tanβ)=z(1−tanαtanβ)
r(rx+ry)=z(1−rxry)
r2y+r2z=xyz−r2z
r2(x+y+z)=xyz
r2s=xyz
The radii at the
points of tangency and the angle bisectors form 3 pairs of congruent
triangles. The area of ΔABC is xr+yr+zr=r(x+y+z), so area =rs, and (area)2=r2s2. Using results we have above, we
obtain
(area)2=s⋅xyz=s(s−a)(s−b)(s−c)
so the area is √s(s−a)(s−b)(s−c).
(area)2=s⋅xyz=s(s−a)(s−b)(s−c)
so the area is √s(s−a)(s−b)(s−c).
No comments:
Post a Comment