Nationally about 70% of incoming community college students are placed into developmental (a.k.a. “remedial” or “foundational”) math classes that earn no college degree credit. But only 10% of these students successfully move past developmental math to earn their degrees.

Four broad areas are being addressed to increase student success through developmental mathematics (1) Placement, (2) Pedagogy, (3) Curriculum, and (4) Affective Domain.

Improving Placement

Failing a class is not the only barrier to completion--the length of the developmental math path defeats many students. More developmental math students drop out of college without ever failing a math class than flunk out of math. One strategy to reduce the number of “exit points” is to help students place into as high a math level as reasonable.

For example, La CaĆ±ada College uses its Math Jam both as an intensive preparation for the math placement exam and also as a recruitment tool to get more students into STEM fields.

The placement instrument itself, typically a machine-graded standardized test, can be augmented or replaced. High school GPA, recency of the previous math course, weekly work hours, and total course load could be part of “multiple measures.” Some schools have abandoned placement into developmental math courses, typically offering supplementary resources for students in credit-bearing classes.

Modifying Pedagogy

James Stigler lists three key types of learning opportunities that students need to experience to become flexible learners: productive struggle, explicit connections, and deliberate practice.

Modularized courses can allow students to spend time only on topics they need to study. The Emporium Model relies on software to do the pretest, primary instruction, and mastery testing, with human interaction largely limited to one-on-one tutoring in the computer lab (where students work lessons and take assessments). The University of Illinois uses software for placement and remediation, and California State University Northridge uses software as part of its hybrid lab remediation for students considered “at risk.”

Technology also plays a key role in both MOOCs (Massive Open Online Courses) and the “flipped” classroom. However, the “MO” aspects of MOOCs appear not to improve student success compared with the online developmental math courses that have existed for decades.

Another way to address the attrition between courses in a sequence is to offer “compressed” courses. The students take two courses during one term, but each course meets the standard number of hours per term--students are essentially immersed in math, which comprises most or all of their studies for that term.

Adjusting the Curriculum

The American Mathematical Association of Two-Year Colleges (AMATYC) has a 2014 position paper that states, “Prerequisite courses other than intermediate algebra can adequately prepare students for courses of study that do not lead to calculus.”

There are numerous “pathways” that have been created to allow developmental math students to pass a transferable math course--typically statistics or a quantitative reasoning course--that do not require many topics typically associated with intermediate algebra. The pathways normally reduce the number of developmental math courses required before earning transferable math units.

- Path2Stats is part of the California Acceleration Project, based on a program developed by Myra Snell at Los Medanos College.
- Statway and Quantway are projects of the Carnegie Foundation for the Advancement of Teaching.
- The Dana Center’s Math Pathways include pathways for both STEM and non-STEM students.
- Mathematical Literacy for College Students (MLCS) and Algebraic Literacy grew out of an AMATYC project. They can serve as alternatives to beginning and intermediate algebra classes for STEM majors, or the MLCS can serve as prerequisite for a transferable non-STEM math course.

Addressing affective domain

The “affective domain” includes attitudes, values, beliefs, interests, and motivation.

Carol Dweck’s research indicated that students (from grade school through graduate school) with “growth mindsets” persist and succeed better than peers with “fixed mindsets”. And importantly, students can learn to move from a fixed mindset to a growth mindset.

David Yeager’s research suggests that the performance gap in math--specifically developmental math--suffered by women and other underrepresented groups can be eliminated by specific brief interventions.